ASTRAL
 PIPES

CPVCpro

ADVANCED HOT AND COLD WATER PLUMBING SOLUTIONS

product catalogue

03

CONTENTS

04
INNOVATION \& RECOGNITIONS

08
STANDARDS \& SPECIFICATIONS

13
FIELDS OF APPLICATIONS

21
THERMAL EXPANSION AND CONTRACTION

26

05
MARKETING NETWORK

09
ABOUT NSF APPROVAL

14
BASIC PHYSICAL PROPERTIES

23
HORIZONTAL \& VERTICAL SUPPORTS

50
INSTALLATION PROCEDURE

06

52

53

ASTRAL, INDIA'S PROGRESSIVE BUILDING MATERIALS COMPANY

Established in 1996 with the aim to manufacture best-in-globe plastic piping systems, Astral Pipes fulfils emerging piping needs of millions of houses and adds extra mileage to India's developing real estate fraternity with the hallmark of unbeaten quality and innovative piping solutions. Keeping itself ahead of the technology curve, Astral has always been a front runner in the piping category by bringing innovation and getting rid of old, primitive and ineffective plumbing methods. Bringing CPVC in India, and pioneering in this technology, have set Astral apart and its highest quality enabled t to obtain NSF approval for its CPVC pipes and fittings. Astral went beyond the category codes by launching many industry firsts, like launching India's first lead-free uPVC pipes for plumbing as well as for stream water, just to name a few. Astral Pipes offers the widest product range across this category when it comes to product applications. Astral Pipes is equipped with production facilities at Santej and Dholka in Gujarat, Hosur in Tamil Nadu, Ghiloth in Rajasthan, Sangli \& Aurangabad in Maharashtra, and Sitarganj in Uttarakhand to manufacture plumbing systems, drainage systems agriculture systems, fire sprinkler piping systems, industrial piping and electrical conduit pipes with all kinds of necessary fitting
Astral Pipes' Infrastructure division Rex offers a comprehensive product range including corrugated piping for drainage and cables, polyolefin cable channels, sewage treatment plants, plastic sheathing ducts, suction hoses, and sub-surface drainage systems. This range helps Astral to establish a strong foothold in infrastructure and agriculture sector in the constantly evolving business of piping

In 2014, Astral forayed into the adhesives category by acquiring UK-based Seallt Services Ltd. and Kanpur based Resinova Chemie Ltd., which manufacture adhesives, sealants and construction chemicals. With five manufacturing facilities now in his business segment, Astral has strengthened its presence in the category and made rapid inroads.

In the year 2020, Astral has expanded its product portfolio and entered into the Water Tanks Segment. The water tank segment is an expanded domain of plumbing and water supply with a huge nationwide potential. Astral Pipes manufactures water tanks from its Santej and Aurangabad manufacturing facilities and slowly will begin manufacturin water tanks from other piping units. The new addition in the product offering will help Astral author a next chapter of success and will establish it as a prominent player in building materials industry.

INNOVATION \& RECOGNITIONS

First to introduce CPVC piping system in India (1999)
First to launch lead free uPVC piping system in India (2004)
Corp Excel- National SME Excellence Award (2006)
First to get NSF Certification for CPVC piping system in India (2007)
First to launch lead-free uPVC column pipes in India (2012)
Enterprising Entrepreneur of the year (2012-13)
Business Standard Star SME of the year (2013)
nc. India Innovative 100 for Smart Innovation under category of 'Technology' (2013)
ndia's Most Promising Brand Award (2014)
Value Creator Award during the first ever Fortune India Next 500 (2015)
ndia's Most Trusted Pipe Brand Award (2016, 2019 \& 2020)
ET Inspiring Business Leaders of India Award (2016)
ndia's Most Attractive Pipe Brand Award (2016)
Fortune India 500 Company (2016)
Consumer Validated Superbrands India (2017, 2019 \& 2021)
India's Most Desired Brand based on TRA's Brand Trust Report (2021)

Power of Desire
愛

MARKETING NETWORK

Astral has a marketing network of more than 800 distributors and 30,000 dealers spread all over India with branch office at Mumbai, Pune, Delhi, Bengaluru, Chennai, Hyderabad, Jaipur, Lucknow and Kochi. Apart from that Astral has its own warehouses at Vijaywada, Hyderabad, Delhi, Kolhapur, Kolkata, Nagpur, Indore, Patna, Varanasi, Jaipur \& Hosur to delive the material as quick as possible. More than 400 techno marketing professionals and administrative personnel are on the board to coordinate with architects, plumbing contractors and plumbers to utilize the best plumbing techniques and to get the best from the products.

ABOUT CPVC ${ }_{\text {pro }}$

ASTRAL CPVC PRO is a class apart in the category, it is more than just a hot and cold plumbing system. To us it is an initiative, to deliver a world class plumbing solution.

ASTRAL CPVC PRO pipe and fittings, manufactured by Astral Poly Technik Limited, are made from the specialty plastic chemically known as Chlorinated Poly Vinyl Chloride [CPVC]. The CPVC compound shall meet cell class DP 110-2-3-2 as per IS:15778 and a maximum service temperature up to $93^{\circ} \mathrm{C}$. The compound is carefully designed in our R \& D and backed by our own expertise of manufacturing CPVC piping system from 19 years,
which will give excellent results in all applications for CPVC piping system. It is unique combination of highest Impact resistance without any loss in pressure bearing capacity / Tensile strength or Vicat softening temperature. This will ensure best trouble free service and also stood notch above the initial installation issues of cracking / damages due to handling, storage and installation.
The pipes are produced in copper tube size (CTS) from $15 \mathrm{~mm}\left(1_{2}^{\prime \prime \prime}\right)$ to $50 \mathrm{~mm}\left(2^{\prime \prime}\right)$ with two different standard dimensional ratios - SDR 11 and SDR 13.5 (Class $1 \&$ Class 2 respectively as per IS:15778). The fittings are produced as per SDR 11. The pipes and fittings in SDR 11 class is also complies to ASTM standard. All Astral CPVC SDR 11 and SDR 13.5 pipes are made from identical CPVC compound material having same physical properties. The CPVC fittings are manufactured from compound material which meets all the requirement as per ASTM standard. Apart from having the same physical properties, SDR 11 and SDR 13.5 which are having different wall thickness and therefore, at any given temperature, they have different pressure ratings. For e.g.

PIPE TEMPERATURE
 PRESSURE RATING ($\left.{ }^{\circ} \mathrm{C}\right)$

GRADE	UNIT	$\mathbf{2 3}^{\mathbf{}} \mathbf{C}$	$\mathbf{8 2} \mathbf{C}$
SDR 11	psi	400	100
	$\mathrm{~kg} / \mathrm{cm}^{2}$	28.1	7.0
SDR 13.5	psi	320	80
	$\mathrm{~kg} / \mathrm{cm}^{2}$	22.5	5.6

Astral also produces CPVC PRO pipes in iron pipe size (IPS), available sizes are $65 \mathrm{~mm}\left(21 / 2^{\prime \prime}\right)$ to 300 mm ($12^{\prime \prime}$) in SCH 40 and SCH 80 which meets the requirements of ASTM F 441. The pressure ratings varies with schedule pipe size and temperature. CPVC pipes of Copper Tube Size (CTS) dimensions can also be connected to CPVC (IPS) dimensions by using IPS x CTS fittings.

STANDARDS \&
 SPECIFICATIONS

ASTM D1784 Standard Specification for Rigid Poly (Vinyl Chloride) (PVC) Compounds and Chlorinated Poly (Viny Chloride) (CPVC) Compounds.
ASTM D2846 Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Hot \& Cold water distribution systems. ASTM F493 Standard Specification for Solvent Cements for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe \& Fittings.

ASTM F441 Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, SCH 40 \& 80
ASTM F438 Socket-Type Chlorinated Polyvinyl Chloride Plastic Pipe Fittings. SCH 40
ASTM F439 Socket-Type Chlorinated Polyvinyl Chloride Plastic Pipe Fittings. SCH 80
ASTM D2774 Underground installation of Thermoplastic pipes
S:15778 Chlorinated poly vinyl chloride (CPVC) pipe for potable hot \& cold water distribution supplies.

PRODUCT RANGE

Class 1 (SDR 11) \& Class 2 (SDR 13.5): $15 \mathrm{~mm}\left(1 / 2^{\prime \prime}\right)$ to $50 \mathrm{~mm}\left(2^{\prime \prime}\right)$ CTS -Confirming to IS:15778:2007 As per ASTM D2846 SCH 40: $65 \mathrm{~mm}\left(2^{\left.1 / 2^{\prime \prime}\right)}\right.$ to $100 \mathrm{~mm}\left(4^{\prime \prime}\right)$ IPS As per ASTM F441 \& ASTM F438

SCH 80: $65 \mathrm{~mm}\left(2^{1 ⁄ 2} 2^{\prime \prime}\right)$ to $300 \mathrm{~mm}\left(12^{\prime \prime}\right)$ IPS As per ASTM F441 \& ASTM F439

MARKING \& UNIFORMITY

Pipes and fittings made from CPVC compound are clearly marked with the manufacturers trademark, material designation, applicable ASTM standard.

DR 11 Pipe: Tan coloured with red stripe
SDR 13.5 Pipe: Tan coloured with brown stripe
SDR 11 fittings: Tan colour
SCH 40 Pipe: Tan colour with brown stripe
SCH 40 fittings: Tan colour
SCH 80 Pipe: Tan colour with red stripe
SCH 80 fittings: Tan colour / Grey colour

ASTRAL CPVC PRO PIPE AND FITTINGS ARE THE BEST CHOICE FOR HOT AND COLD POTABLE WATER DISTRIBUTION

THE RAW MATERIAL

Astral CPVC Pro pipes and fittings are manufactured with specially designed CPVC Compound formulated by Astral itself. The compound is mixture of imported CPVC Resin and other ingredients like Impact Modifiers Lubricants, UV stabilizers etc.
The compound for pipes and fittings are carefully designed in our R\&D facility and checked for different properties like Dynamic Thermal Stability, Fusion, Torque and all other rheological properties. Thus designed CPVC compound can give highest processibility as well as best Physical and Mechanical properties.

The compound meets or exceed all requirements for cell classification for IS:15778 and ASTM D2846
The material is also approved by NSF for its safe use with potable water and thus completely safe for drinking water.

ABOUT NSF APPROVAL

ASTRAL Poly Technik Ltd. is proud to announce that ASTRAL CPVC PRO is approved by NSF International, a leading global independent public health and safety organization. To receive certification, Astral Poly Technik Ltd. submitted product samples to NSF that underwent rigorous testing to recognized standards and agreed to unannounce manufacturing facility audits and periodic retesting to verify continued conformance to the standards. Find us in the NSF water listings by visiting http://www.nsf.org/ certified-products-systems.

ABOUT NSF INTERNATIONAL
NSF International is a global independent organization that writes standards and protocols and tests and certifie products for the food, water and consumer goods industries to minimize adverse health effects and protect the environment. NSF operates in over 165 countries. Founded in 1944, NSF is a Pan American Health Organization/Worl Health Organization Collaborating Center on Food Safety, Water Quality and Indoor Environment.

WHY ASTRAL

CPVC PRO

INTRODUCED CPVC FOR

THE FIRSTTIME IN INDIA

There was a time when CPVC pipes were not accepted by the industry. This was mainly because GI pipes were 30% cheaper than CPVC pipes. So strength of steel and cost were major factors why GI pipes were norms. But ASTRAL introduced CPVC pipes in India for the first time embarking upon anti-corrosion and hot water compatibility. Since then, ASTRAL CPVC has been a flagship CPVC product leading

the way in the market.

HIGHEST NUMBER OF CERTIFICATIONS

NSF, BIS and IAPMO Certifications : ASTRAL the only pipe manufacturing company in India having most prestigious quality approval from National Sanitation Foundation (NSF), Bureau of Indian Standards (BIS) and certifications from IAPMO.

*ONLY THOSE PRODUCTS BEARING THE ABOVE MARKS ARE CERTIIIED.

STATE OF THE ART

 MANUFACTURINGASTRAL is equipped with state of art manufacturing facilities at Santej, Dholka, Hosur and Ghiloth plants. High speed and accurate extruders and injection molding machines including innovative manufacturing techniques being used to manufacture the ultra modern, errorless ASTRAL CPVC PRO pipes and fittings.

WIDEST

PRODUCTRANGE
ASTRAL is the only company that provides the pipes with sizes ranging from $1 / 2^{\prime \prime}$ to $12^{\prime \prime}$ diameter. Hence you can meet any requirement with this widest range of CPVC pipes.

TOTAL BACKWARD

INTEGRATION
All of Astral's CPVC Pipes and Fittings are made from CPVC Compound which is manufactured and controlled by Astral at every stage of the process. This backward integration helps us consistently maintain the highest quality for all pipes and fittings.

SKILL DEVELOPMENT INITIATIVES FOR PLUMBERS

Astral provides training to plumbers and plumbing contractors throughout the year by updating them about modern plumbing techniques and to do plumbing work more effectively and professionally.

KEY

PROPERTIES

ASTRAL® CPVC PRO pipe gives excellent resistance even under the harshest of water conditions so there are none of the purity worries from corrosion of metal pipe or soldered joints. ASTRAL® CPVC PRO pipe keeps pure water pure.

LOWER BACTERIAL

 GROWTHBacteria build up with CPVC is far lower than with alternative piping materials due to very smooth internal surface. It does not deteriorate quality of water and prevents contamination, unpleasent odour, bad taste and discolouration of water.

NO SCALE, PITOR LEACH FORMATION

Even after years of use in the most aggressive conditions, this pipe won't corrode, standing against low pH water, coastal salt, air exposures and corrosive soils. It stays as solid and reliable as the day it was installed, maintaining full water carrying capacity.

EASY PLUMBING PROCESS

CPVC uses a simple, solvent cement jointing method. Tools required are very simple and inexpensive (chamfering tool and pipe cutter only) and avoid the need for an electrical source. Also due to superior insulation properties compare to copper and GI, this system saves installation cost.

UNAFFECTED BY CHLORINE IN WATER

Some materials may be adversely affected by chlorine contained in the water supply, which can cause breakdown of the polymer chains and potential leaks. In this respect, ASTRAL ${ }^{\odot}$ CPVC PRO pipe is unaffected by the chlorine present in potable water supply.

E HOTWATER COMPATIBLE

ASTRAL® CPVC PRO pipe is compatible with both hot and cold water. It withstand very high temperature upto $93^{\circ} \mathrm{C}$. Many solar, electric and gas water heaters have CPVC piping system for heat efficiency and lower installation cost.

LOWTHERMAL EXPANSION

ASTRAL® CPVC PRO pipe has a lower coefficient of thermal expansion, reducing the amount that the pipe expands when hot water is running, again reducing unsightly 'looping' of the pipe.

TOUGH,
 RIGID MATERIAL

ASTRAL® ${ }^{\oplus}$ CPVC PRO pipe has a much higher strength than other thermoplastics used in plumbing. Hence, it needs less hangers and supports and there is no unsightly looping of the pipe. It has a higher pressure bearing capability, leading to the same flow rate with a smaller size. Also having high UV resistance, life span is more than 50 years.

FIELDS OF

APPLICATIONS

Astral CPVC PRO Pipes are ideal for
Hot and Cold water applications in

- Homes, apartments
- Hotels, resort
- Hospitals

High and low rise buildings

- Corporate and commercial houses
- Academic institutes
etc. for pure and hygienic water supply

FIRE

SAFETY
CPVC has a Limiting Oxygen Index (LOI) of 60. Thus in air, ASTRAL® CPVC PRO pipe does not support combustion. No flaming drips, does not increase the fire load, low flame spread, low smoke generation.

CPVC plumbing system is approved for contact with potable water in wide range of countries including USA, UK, Canada, Germany, France, The Netherlands, Middle East, Africa etc.

BASIC PHYSICAL PROPERTIES

PROPERTY	TEST METHOD	ENGLISH UNIT	SI UNIT
GENERAL PROPERTIES			
Specific Gravity @ $23^{\circ} \mathrm{C}$	ASTM D792	$1.50 \mathrm{~g} / \mathrm{cm}^{3}$	$1.50 \mathrm{~g} / \mathrm{cm}^{3}$
Specific volume @ $23^{\circ} \mathrm{C}$	-	$0.666 \mathrm{~cm}^{3} / \mathrm{g}$	$0.666 \mathrm{~cm}^{3} / \mathrm{g}$
Water Absorption @ $23^{\circ} \mathrm{C}$	ASTM D570	0.02\%	0.02\%
Water Absorption @ $100^{\circ} \mathrm{C}$	ASTM D570	0.50\%	0.50\%
Cell Class	ASTM D1784	23447-B	D.P.110-2-3-2
Rockwell Hardness @ $23^{\circ} \mathrm{C}$	ASTM D785	119	
MECHANICAL PROPERTIES			
Izod Impact(Notched) @ $23^{\circ} \mathrm{C}$	ASTM D256	4.5ft.lbs/in	267 J/m
Tensile Strength @ $23^{\circ} \mathrm{C}$	ASTM D638	8000 psi	$55 \mathrm{~N} / \mathrm{mm}^{2}$
Tensile Modulus @ $23^{\circ} \mathrm{C}$	ASTM D638	3,94,000 psi	$2710 \mathrm{~N} / \mathrm{mm}^{2}$
Flexural Strength @ $23^{\circ} \mathrm{C}$	ASTM D790	15,100 psi	$104 \mathrm{~N} / \mathrm{mm}^{2}$
Flexural Modulus @ $23^{\circ} \mathrm{C}$	ASTM D790	4,15,100 psi	$2860 \mathrm{~N} / \mathrm{mm}^{2}$
Compressive Strength @ $23^{\circ} \mathrm{C}$	ASTM D695	10,200 psi	$71 \mathrm{~N} / \mathrm{mm}^{2}$
Compressive Modulus @ $23^{\circ} \mathrm{C}$	ASTM D695	1,97,500 psi	$1360 \mathrm{~N} / \mathrm{mm}^{2}$
THERMAL PROPERTIES			
Coefficient of Thermal Expansion	ASTM D696	$3.4 \times 10^{-5} \mathrm{in} / \mathrm{in} /{ }^{\circ} \mathrm{f}$	$6.3 \times 10^{-5} \mathrm{~m} / \mathrm{m} /{ }^{\circ} \mathrm{K}$
Thermal Conductivity	ASTM C177	0.95 BTU/(hr.ft ${ }^{\text {2 }}{ }^{\circ} \mathrm{F}$)	$0.14 \mathrm{~W} / \mathrm{mk}$
Heat Distortion Temperature	ASTM D648	$221^{\circ} \mathrm{F}$	$105^{\circ} \mathrm{C}$
HeatCapacity@23 ${ }^{\circ} \mathrm{C}$		0.21 BTU/16 ${ }^{\circ} \mathrm{F}$	$0.90 \mathrm{~J} / \mathrm{gK}$
HeatCapacity@100 ${ }^{\circ} \mathrm{C}$		$0.26 \mathrm{BTU} / \mathrm{lb}^{\circ} \mathrm{F}$	$1.10 \mathrm{~J} / \mathrm{gK}$
FLAMMABILITY			
Flammability Rating	UL94	0.062 inch/ 0.157 cm	V0,5VA\&5VB
Flame spread	ASTM E84	15	-
Smoke developed	ASTM E84	70-125	-
Limiting oxygen index	ASTM D2863	60\%	-
ELECTRICAL			
Dielectric Strength	ASTM D147	$1250 \mathrm{~V} / \mathrm{mil}$	492,000 $/ \mathrm{cm}$
Dielectric Constant @ 60 Hz, -1 ${ }^{\circ} \mathrm{C}$	ASTM D150	3.7	3.7
Power Factor @ 1000 Hz	ASTM D150	0.007\%	0.007\%
Volume Resistivity @ $23^{\circ} \mathrm{C}$	ASTM D257	$3.4 \times 10^{15} \mathrm{ohm} / \mathrm{cm}$	$3.4 \times 10^{15} \mathrm{ohm} / \mathrm{cm}$

Note: Above values are typical values. It should be used as a general recommendation. Do not consider as a specification

TECHNICAL
 DETAILS

ize			Outside Diameter, Inch (mm)				Wall Thickness, Inch (mm)				Pipe Pr. R. psi (kg/cm²)			
cm	(mm)	in.			Toler		Mini	num	Toler	nce	$73.4{ }^{\circ} \mathrm{F}$	$\left(23^{\circ} \mathrm{C}\right)$	180 ${ }^{\circ} \mathrm{F}$	(82 ${ }^{\circ} \mathrm{C}$)
Outside Diameters and Wall Thicknesses For CPVC 4120, SDR 11 Plastic Pipe As Per ASTM D-2846 \& conforming to IS: 15778														
1.5	(15)	$1 / 2^{*}$	0.625	(15.9)	± 0.003	(0.08)	0.068	(1.73)	$+0.020$	(0.51)	400	(28.1)	100	(7.0)
2.0	(20)	$3 / 4$	0.875	(22.2)	± 0.003	(0.08)	0.080	(2.03)	+0.020	(0.51)	400	(28.1)	100	(7.0)
2.5	(25)	1	1.125	(28.6)	± 0.003	(0.08)	0.102	(2.59)	+ 0.020	(0.51)	400	(28.1)	100	(7.0)
3.2	(32)	11/4	1.375	(34.9)	± 0.003	(0.08)	0.125	(3.18)	+0.020	(0.51)	400	(28.1)	100	(7.0)
4.0	(40)	11/2	1.625	(41.3)	± 0.004	(0.10)	0.148	(3.76)	+ 0.020	(0.51)	400	(28.1)	100	(7.0)
	(50)	2	2.125	(54.0)	± 0.004	(0.10)	0.193	(4.90)	$+0.023$	(0.58)	400	(28.1)	100	(7.0)

Nominal Size		Outside Diameter, Inch (mm)				Wall Thickness, Inch (mm)				Pipe Pr. R. psi ($\left.\mathrm{kg} / \mathrm{cm}^{2}\right)$			
$\mathrm{cm}(\mathrm{mm})$ in.		Averag		Tolera	ance	Minim	mum	Toleran	rance	$73.4{ }^{\circ} \mathrm{F}$	$\left(23^{\circ} \mathrm{C}\right)$	$180^{\circ} \mathrm{F}$	($82^{\circ} \mathrm{C}$)
Outside Diameters and Wall Thicknesses For CPVC 4120, SDR 13.5 Plastic Pipe conforming to IS: 15778													
1.5 (15)	$1 / 2^{*}$	0.625	(15.9)	± 0.003	(0.08)	0.055	(1.40)	+0.020	(0.51)	320	(22.5)	80	(5.6)
2.0 (20)	3/4	0.875	(22.2)	± 0.003	(0.08)	0.065	(1.65)	+0.020	(0.51)	320	(22.5)	80	(5.6)
2.5 (25)	1	1.125	(28.6)	± 0.003	(0.08)	0.083	(2.12)	+0.020	(0.51)	320	(22.5)	80	(5.6)
3.2 (32)	$11 / 4$	1.375	(34.9)	± 0.003	(0.08)	0.102	(2.59)	+0.020	(0.51)	320	(22.5)	80	(5.6)
4.0 (40)	11/2	1.625	(41.3)	± 0.004	(0.10)	0.120	(3.06)	+0.020	(0.51)	320	(22.5)	80	(5.6)
5.0 (50)	2	2.125	(54.0)	± 0.004	(0.10)	0.157	(4.00)	+0.023	(0.58)	320	(22.5)	80	(5.6)

Nominal Size	Outside Diameter, Inch (mm)		I.D. $\operatorname{Inch}(\mathrm{mm})$	Wall Thickness, Inch (mm)		Pipe Pr.R. .psil (kg/m²)	
$\mathrm{cm} \mathrm{(mm)} \mathrm{in}$.	Average	Tolerance	Average	Minimum	Tolerance	$73.4{ }^{\circ} \mathrm{F}$	$\left(23^{\circ} \mathrm{C}\right)$

Outside Diameters, Wall Thickness \& Pressure Rating For CPVC 4120, Schedule 40 Piping System As per ASTM F 441

6.5	(65)	$21 / 2$	2.875	(73.0)	± 0.007	(0.18)	2.444	(62.07)	0.203	(5.16)	+0.024	(0.61)	300															
8.0	(80)	3	3.500	(88.9)	± 0.008	(0.20)	3041	(7726)	0.216	(549)	+0.026	(0.64)	280		8.0	(80)	3	3.500	(88.9)	± 0.008	(0.20)	3.041	(77.26)	0.216	(5.49)	+0.026	(0.66)	280
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:															
$10.0(100)$	4	4.500	(114.3)	$+0.009)$	(0.23)	3.998	(101.55)	0.237	(6.02)		0.028	(0.71)	220															
(1557)														$\begin{array}{llllllllllllll}10.0 & (100) & 4 & 4.500 & (114.3) & \pm 0.009 & (0.23) & 3.998 & (101.55) & 0.237 & (6.02) & +0.028 & (0.71) & 220 \\ (155.47)\end{array}$														

Pr. R. = Pressure Rating

Nominal Size		Outside Diameter, Inch (mm)				I.D. $\operatorname{Inch}(\mathrm{mm})$		Wall Thickness, Inch (mm)				Pipe Pr. R.psi (kg/cm²)	
		Average		Tolerance				Minimum		Tolerance		$73.4{ }^{\circ} \mathrm{F}$	$\left(23^{\circ} \mathrm{C}\right)$
Outside Diameters, Wall Thickness \& Pressure Rating For CPVC 4120, Schedul 80 Piping System As per ASTM F 441													
6.5 (65)	$21 / 2$	2.875	(73.0)	± 0.007	(0.18)	2.288	(58.14)	0.276	(7.01)	+ 0.033	(0.84)	420	(29.53)
8.0 (80)	3	3.500	(88.9)	± 0.008	(0.20)	2.864	(72.75)	0.300	(7.62)	+ 0.036	(0.91)	370	(26.01)
10.0 (100)	4	4.500	(114.3)	± 0.009	(0.23)	3.778	(95.97)	0.337	(8.56)	$+0.040$	(1.02)	320	(22.50)
15.0 (150)	6	6.625	(168.3)	± 0.011	(0.28)	5.710	(145.04)	0.432	(10.97)	+ 0.052	(1.32)	280	(19.69)
20.0 (200)	8	8.625	(219.1)	± 0.015	(0.38)	7.565	(192.15)	0.500	(12.70)	+ 0.060	(1.52)	250	(17.57)
25.0 (250)	10	10.750	(273.1)	± 0.015	(0.38)	9.493	(241.12)	0.593	(15.06)	+ 0.071	(1.80)	230	(16.17)
30.0 (300)	12	12.750	(323.90)	± 0.015	(0.38)	11.294	(286.87)	0.687	(17.45)	$+0.082$	(2.08)	230	(16.17)

emperature Derating Factors

Working Temperature $\left({ }^{\circ} \mathrm{F}\right)$	$73-80$	90	100	120	140	160	180	200
Working Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$23-25$	32	38	49	60	71	82	93
Pipe Derating Factor	1.00	0.91	0.82	0.65	0.50	0.40	0.25	0.20
Valve Derating Factor	1.00	0.95	0.90	0.80	0.70	0.61	0.53	0.45

N.B.: For obtaining working pressure in system, multioly the maximum pressure with derating factor at the working temperature of system. *Valves, Unions \& Specialitit Products have different elevates temperature rating than pipe.

Tapered Socket Dimensions For CPVC 4120, SDR 11, Plastic Pipe Fittings AS PER ASTM D2846

(0.12)

| Nominal Size | | Threads
 (Per Inch) | Effective
 Threact Length
 (L) inch |
| :---: | :---: | :---: | :---: | | Pitch of |
| :---: |
| Thread |
| (P) |

Nominal Size		(G) min. inch	$\begin{aligned} & \text { (J) } \mathrm{min} . \\ & \text { inch. } \end{aligned}$	(N) min. inch
(mm)	(in.)			
Minimum Dimensions from Center to End of Socket (Laying Length) for CPVC 4120, SDR 11 Plastic Tubing Fittings* Per ASTM D 2846				
15	1/2	0.382	0.183	0.102
20	3/4	0.507	0.235	0.102
25	1	0.633	0.287	0.102
32	$11 / 4$	0.758	0.339	0.102
40	11/2	0.884	0.391	0.102
50	2	1.134	0.495	0.102

Basic Socket Dimension

Schedule 40 CPVC Fittings As Per ASTM F 438
Schedule $\mathbf{8 0}$ CPVC Fittings As Per ASTM F 439

FLUID HANDLING CHARACTERISTICS OF ASTRAL CPVC PRO PIPES

LINEAR FLUID FLOW VELOCITY

The linear velocity of a flowing fluid in a pipe is
ed from
$V=\frac{0.4085 \mathrm{~g}}{\mathrm{~d}^{2}}$
WhereV = Linear fluid flow velocity in feet per second
9 = Flow rate in gallons per minute
$d=$ Inside diameter of pipe in inches this formula. These values are accurate for all fluids.

Linear fluids flows velocity in a system should generally be limited to $5 \mathrm{ft} / \mathrm{s}$, particularly for pipe size " and grater. Following this guideline will minimize risk f hydraulic shock damage due to water hammer surg pressures.

RICTION LOSS IN PIPES

A great advantage that ASTRAL CPVC PRO Pipe enjoys over its metallic competitors is a smooth inner surfac
which is resistant to scaling and fouling. This means tha friction pressure losses in the fluid flow are minimized from the beginning and do not significantly increase as the system ages, as can be the case with metal pipes subject to scaling and fouling.
The Hazen-Willims formula is the generally accepted
method of calculating friction head losses in piping method of calculating friction head losses in piping
systems. The values in the following fluid tables are based on this formula and a surface roughness constant for other piping materials are given beside:
$\mathrm{f}=0.2083 \times \quad\left(\frac{100}{\mathrm{C}}\right)^{1.852} \frac{\mathrm{~g}^{1.852}}{\mathrm{~d}^{4.8555}}$
Wheref = Friction head in feet of water per 100 feet of pipe
$d=$ Inside diameter of pipe in inches
$\mathrm{g}=$ Flow rate in gallons per minute
c $=$ pipe surface roughness constant

CONSTANT (C) TYPE OF PIPE

150
30-140
125
120 - cast iron, 4-12 years old galvanized stee
100 - cast iron, 13-20 years old
60-80 - cast iron, worn / pitted

FRICTION LOSS IN FITTINGS

Friction losses through fittings are calculated from the equivalent length of straight pipe which would produce he same friction loss in the fluid. The equivalent length of pipe for common fittings are given here.

$\begin{gathered} \text { Nominal } \\ \text { Siniz. } \\ \text { (in. } \end{gathered}$	$\begin{gathered} 90^{\circ} \\ \text { Strandard } \\ \text { Elbow (feet) } \end{gathered}$	$\begin{gathered} 45^{\circ} \\ \text { Standard } \\ \text { Elbow (feet) } \end{gathered}$	$\begin{aligned} & \text { Standard } \\ & \text { Stee Ren } \\ & \text { Flow (feet) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Standard } \\ & \text { Tee Branch } \\ & \text { Tow (feet) } \end{aligned}$
1/2	1.55	0.83	1.04	3.11
3/4	2.06	1.10	1.37	4.12
1	2.62	1.40	1.75	5.25
11/4	3.45	1.84	2.30	6.90
11/2	4.03	2.15	2.68	8.05
2	5.17	2.76	3.45	10.30
21/2	6.10	3.30	4.10	12.20
3	7.60	4.10	5.10	15.20
4	10.00	5.30	6.70	20.00
6	15.10	8.00	10.10	30.20
8	19.90	10.60	13.20	39.70
10	24.90	13.30	16.60	49.90
12	29.70	15.90	19.80	59.40

WATER HAMMER SURGE PRESSURE

Whenever the flow rate of fluid in a pipe is changing, there is a surge in pressure known as water hammer, The longer hydraulic shock will be. Water hammer may be caused by hydraulic shock will be. Water hammer may be caused by the movement of entrapped air through the pipe. The maxi
$P_{w h}=\frac{p \Delta V}{g_{c}}\left[\frac{p}{g_{c}}\left(\frac{1}{K}+\frac{d}{b E}\right)\right]^{1 / 2}$
Where Pwh = Maximum surge pressure, psi
$p=$ Fluid density
$\Delta \mathrm{V}=$ Change in fluid velocity
gc $=$ Gravitational constant
$\mathrm{K}=$ Bulk modulus of elasticity of fluid
b $=$ Pipe wall thickness
$\mathrm{E}=$ Pipe material bulk modulus of elasticit d $=$ Pipe inside diameter

The value in the following tables are based on this formula at $73^{\circ} \mathrm{F}$ and the assumption that water flowing at a given rate of gallons per minute is suddenly completely stopped.
At $180^{\circ} \mathrm{F}$, the surge pressure is approximately 15% less. At $180^{\circ} \mathrm{F}$, the surge pressure is approximately 15% less.
The value for fluids other then water may be by multiplying by the square root of the fluid's specific gravity.

THE WATER HAMMER SURGE PRESSURE PLUS THE SYSTEM OPERATING PRESSURE SHOULD NOT EXCEED THE RECOMMENDED WORKING PRESSURE RATING OF THE SYSTEM.

In order to minimize hydraulic shock due to water hammer linear fluid flow velocity should generally be limited to $5 \mathrm{ft} / \mathrm{s}$. Velocity at system start-up should be limited to $1 \mathrm{ft} / \mathrm{s}$
during fill ing until it is certain that all air has been flushed from the system and pressure has been brought up to operating conditions. Pump should not be allowed to draw in air.

Where necessary, extra protective equipment may be used to prevent water hammer damage, such equipment might include pressure relief valves, shock absorbers, surge
arrestors and vacuum air relief valves.
FRICTION LOSS AND FLOW VELOCITY FOR SDR 11 CTC CPVC THERMOPLASTIC PIPE
（Friction head and Friction Loss are per 100 feet of pipe）

Friction Pressure Loss （PSI Per 100 Ft．）						\bigcirc								¢	号		$\stackrel{\sim}{\square}$	$\underset{\sim}{\mathrm{O}}$	$\stackrel{n}{\mathrm{~N}}$	$\underset{\sim}{\sim}$	¢		$\frac{\circ}{\dot{f}}$	$\begin{array}{\|c} \circ \\ \stackrel{\circ}{\circ} \end{array}$	$\underset{\sim}{\infty}$	$\stackrel{\circ}{ }$	$\stackrel{\check{c}}{\alpha}$	$\stackrel{\sim}{\sim}$	O	$\stackrel{\text { ® }}{ }$	
Friction Head Loss （Ft．of Water Per 100 Ft ．）	$\stackrel{\rightharpoonup}{\sim}$					$\stackrel{m}{0}$							g	$\stackrel{0}{\circ}$	$\stackrel{\circ}{\approx}$		\mid	$\stackrel{\underset{\infty}{\infty}}{\infty}$	$\stackrel{\circ}{\circ}$	$\stackrel{\sim}{0}$			$\stackrel{\circ}{\circ}$	$\left\|\begin{array}{l} \text { \&f } \\ \vdots \end{array}\right\|$	隹	$\stackrel{\underset{\sim}{\infty}}{\stackrel{\infty}{\sim}}$	$\underset{\sim}{\underset{\sim}{\sim}}$	$\stackrel{\stackrel{\circ}{\infty}}{\stackrel{\circ}{\sim}}$	$\begin{gathered} \mathbf{+} \\ \stackrel{\rightharpoonup}{d} \end{gathered}$	$\underset{\sim}{\underset{\sim}{n}}$	
Flow Velocity （Feet Per Second）						$\stackrel{\circ}{\circ}$								$\underset{\sim}{\circ}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{ }$		$\underset{\sim}{\infty}$	$\left\lvert\, \begin{gathered} \stackrel{\circ}{\dot{子}} \\ \dot{子} \end{gathered}\right.$	$\begin{gathered} \mathrm{m} \\ \underset{\sigma}{2} \end{gathered}$	$\underset{\sim}{\circ}$			$\begin{gathered} n \\ 0 \\ 0 \end{gathered}$	$\underset{\sim}{g}$	$\stackrel{\circ}{\infty}$	ஷু	$\begin{gathered} \stackrel{5}{\circ} \\ \stackrel{\circ}{\circ} \end{gathered}$	$\underset{\sim}{\underset{\mathrm{I}}{2}}$	$\left\|\begin{array}{l} \bar{n} \\ \underset{\sim}{2} \end{array}\right\|$		$\stackrel{0}{0}$
Friction Pressure Loss （PSI Per 100 Ft．）						$\stackrel{\square}{\circ}$							Lo	$\stackrel{\square}{\square}$			$\frac{\curvearrowleft}{\mp}$	$\left\|\begin{array}{c} \bar{\infty} \\ \stackrel{\rightharpoonup}{\circ} \end{array}\right\|$	$\stackrel{\sim}{\wedge}$	$\stackrel{\square}{2}$	\bar{m}			$\stackrel{\leftrightarrow}{\infty}$	$\underset{\sim}{\hat{\sim}}$	$\stackrel{\circ}{\underset{\sim}{\sim}}$					$\stackrel{\square}{\square}$
Friction Head Loss （Ft．of Water Per 100 Ft ．）	$\begin{aligned} & \approx \\ & \approx \\ & \approx \end{aligned}$					$\stackrel{y}{d}$							$\stackrel{\mathrm{Na}}{=}$	$\underset{\sim}{\underset{m}{2}}$	Mల			$$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$			$\begin{aligned} & \stackrel{\sim}{\sim} \\ & \stackrel{\sim}{m} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \infty \\ \hline \dot{子} \\ \hline \end{array}$	$\begin{aligned} & \infty \\ & \infty \\ & \dot{c} \\ & \substack{2} \end{aligned}$	$\begin{aligned} & \grave{m} \\ & \substack{0} \end{aligned}$					$\stackrel{\text { ¢ }}{\substack{40}}$
Flow Velocity （Feet Per Second）													$\bar{\sim} \dot{\sim}_{i}^{n}$	$\underset{\sim}{\underset{\sim}{2}}$	$\stackrel{\substack{4}}{4}$			$\begin{gathered} \underset{y}{d} \\ 0 \end{gathered}$	$\begin{aligned} & \circ \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{\sim}{\circ}$	9		$\stackrel{\sim}{\stackrel{\circ}{\tau}}$	$\begin{array}{\|c} \underset{\sim}{\mathrm{N}} \end{array}$	$\underset{\sim}{\infty}$	$\stackrel{\square}{\stackrel{\circ}{\circ}}$					s
Friction Pressure Loss （PSI Per 100 Ft．）						${ }^{7}$							츨	$\underset{\sim}{\underset{\sim}{\mathrm{m}}}$	$\underset{0}{\varlimsup}$		$\stackrel{m}{\circ}$	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline \stackrel{y}{c} \end{array}$	$\stackrel{\infty}{\infty}$	$\underset{\sim}{\underset{\sim}{A}}$		$\underset{\sim}{\circ}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\infty} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \circ \\ \hline \dot{\sigma} \\ \hline \end{array}$							文
Friction Head Loss （Ft．of Water Per 100 Ft ．）	$\begin{aligned} & \approx \\ & = \end{aligned}$					$\stackrel{\circ}{\circ}$							$\underset{\sim}{\mathrm{C}}$	$\underset{\infty}{\infty}$	$\underset{\underset{y}{\underset{~}{2}}}{ }$			$\begin{array}{\|c} \stackrel{n}{2} \\ \stackrel{e}{\circ} \\ \hline \end{array}$	$\begin{array}{\|} \bar{\sigma} \\ \dot{\sigma} \end{array}$	$\underset{n}{n}$			$\begin{gathered} \circ \\ \stackrel{\circ}{\wedge} \end{gathered}$	$\begin{array}{\|c} \stackrel{\leftrightarrow}{a} \\ \underset{\alpha}{2} \end{array}$							$\stackrel{\text { ¢ }}{ }$
Flow Velocity （Feet Per Second）						$\stackrel{-}{\square}$							$\stackrel{\sim}{\infty}$	$\underset{\substack{\text { di } \\ \hline}}{ }$		$\underset{\circ}{8}$	$\hat{C}_{\infty}^{\infty}$	$\stackrel{\circ}{\circ}$	$\stackrel{\stackrel{0}{m}}{\stackrel{y}{\mp}}$	$\underset{\sim}{\underset{\sim}{j}}$	$\underset{\sim}{\underset{\sim}{x}} \underset{\sim}{\sim}$		$\begin{gathered} \underset{\sim}{7} \\ \stackrel{y}{6} \end{gathered}$	$\stackrel{\curvearrowleft}{\stackrel{n}{\gtrless}}$							¢
Friction Pressure Loss （PSI Per 100 Ft．）		\bigcirc	$\left\|\begin{array}{c} \underset{c}{0} \end{array}\right\|$	夺	∞_{0}^{∞}	$\stackrel{\sim}{2}$		$\stackrel{\circ}{\underset{\sim}{2}}$	$\underset{\sim}{\underset{\sim}{\sim}}$	$\underset{\sim}{\mathrm{N}}$	$\underset{\sim}{\sim}$		$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\infty}$			$\stackrel{\underset{\sim}{\circ}}{\underset{\sim}{\mid}}$	$\begin{array}{\|l\|} \hline \stackrel{\circ}{\circ} \\ \stackrel{+}{\mathrm{m}} \end{array}$	$\begin{gathered} \text { n } \\ \substack{0 \\ \hline} \end{gathered}$												n
Friction Head Loss （Ft．of Water Per 100 Ft ．）	\equiv		$\left.\begin{gathered} n \\ 0 \\ 0 \end{gathered} \right\rvert\,$	$\underset{\sim}{\square}$	－	$\stackrel{\infty}{\sim}$		$\begin{gathered} \stackrel{\circ}{\alpha} \\ \dot{\sim} \end{gathered}$	$\left\|\begin{array}{c} \infty \\ i \\ i \end{array}\right\|$	9	$\underset{\infty}{i}$		$\stackrel{m}{\stackrel{?}{\circ}}$	$\underset{\text { テ}}{\bar{\sim}}$	$\begin{gathered} \stackrel{\rightharpoonup}{e} \\ \stackrel{m}{2} \end{gathered}$		$\begin{gathered} \text { व. } \\ \dot{\circ} \\ \text { in } \end{gathered}$	$\begin{gathered} \infty \\ \infty \\ \underset{\sim}{2} \end{gathered}$	$\begin{gathered} \stackrel{\circ}{\circ} \\ \stackrel{\circ}{\circ} \end{gathered}$												S
Flow Velocity （Feet Per Second）		$\underset{\circ}{\mathrm{F}}$	$\stackrel{\circ}{\circ}$	$\underset{\sim}{f}$	$\stackrel{\sim}{\square}$	J		$\stackrel{\infty}{\infty} \underset{\sim}{0}$	$\left\lvert\, \begin{gathered} \underset{\sim}{m} \end{gathered}\right.$	$\underset{\sim}{\infty}$	$\stackrel{\sim}{\sim}$	$\underset{\sim}{\underset{\sim}{x}}$	$\stackrel{\infty}{\substack{\alpha \\ \sim}}$	$\underset{\sim}{\sim}$	ở		$\stackrel{\underset{\sim}{\mathrm{a}}}{\sim}$	$\left\|\begin{array}{c} \dot{2} \\ \dot{J} \end{array}\right\|$	$\begin{array}{r} \circ \\ \stackrel{\circ}{\circ} \\ \stackrel{\circ}{0} \end{array}$												O
Friction Pressure Loss （PSI Per 100 Ft．）		N	$\stackrel{0}{0}$	$\stackrel{\stackrel{\rightharpoonup}{0}}{\stackrel{0}{\circ}}$	$\stackrel{\underset{\sim}{\mathrm{o}}}{\stackrel{\rightharpoonup}{\circ}}$	\％		$\begin{gathered} 2 \\ 0 \\ \hline \end{gathered}$	$\left\|\begin{array}{c} 5_{\infty} \end{array}\right\|$	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\circ}{\circ}}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{i}}}{\stackrel{-}{2}}$		$\begin{gathered} \stackrel{\circ}{n} \\ \stackrel{n}{n} \\ \hline \end{gathered}$	$\begin{gathered} \infty \\ \underset{\sim}{\infty} \\ \hline \end{gathered}$	$\underset{\underset{\sim}{i}}{\stackrel{\rightharpoonup}{i}}$																¢
Friction Head Loss （Ft．of Water Per 100 Ft ．）	$\stackrel{\subseteq}{\infty}$		$\underset{\sim}{\infty}$	$\left\|\begin{array}{l} \dot{\infty} \\ \underset{m}{2} \end{array}\right\|$	$\begin{array}{\|l} 4 \\ 0 \\ 0 \end{array}$	亏		$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{c}{\dot{1}} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \underset{\infty}{\infty} \\ \underset{\infty}{2} \\ \hline \end{array}$	$\stackrel{\circ}{\infty}$			$\stackrel{\circ}{\sim}$	$\begin{array}{\|c} \infty \\ \stackrel{\sim}{n} \\ \hline \end{array}$	$\begin{aligned} & \overline{\underset{\sim}{1}} \\ & \underset{\sim}{2} \end{aligned}$																＋
Flow Velocity （Feet Per Second）		$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	$\left\|\begin{array}{c} \mathrm{g} \\ \mathrm{i} \end{array}\right\|$	$\underset{\sim}{\infty}$	\％		$\stackrel{\rightharpoonup}{\circ} \underset{\dot{\sigma}}{ }$	$\left\|\begin{array}{c} i \\ i \\ \omega \end{array}\right\|$	$\underset{\sim}{\infty}$	$\stackrel{\nearrow}{\grave{ }}$	\div	$\stackrel{\alpha}{\wedge}$	$\stackrel{\alpha}{\stackrel{\alpha}{=}}$	$\begin{gathered} \infty \\ \stackrel{\leftrightarrow}{6} \end{gathered}$	$\stackrel{\infty}{\stackrel{\circ}{\oplus}}$															¢
Friction Pressure Loss （PSI Per 100 Ft．）		$\stackrel{\sim}{\circ}$	$\left\lvert\, \begin{gathered} 8 \\ \stackrel{y}{n} \end{gathered}\right.$	$\stackrel{\stackrel{0}{\circ}}{\stackrel{\circ}{\circ}}$	$\stackrel{\rightharpoonup}{\infty}$	$\underset{\sim}{\underset{\sim}{N}}$		$\underset{\sim}{\infty}$	$\left.\begin{array}{\|c} \infty \\ \infty \\ 0 \\ 0 \end{array} \right\rvert\,$	$\underset{\sim}{c}$	$\frac{8}{\infty}$		$\begin{aligned} & \mathfrak{e} \\ & \infty \\ & \infty \end{aligned}$																		O
Friction Head Loss （Ft．of Water Per 100 Ft ．）	$\underset{\sim}{\approx}$		$\stackrel{\Re}{\sim}$	$\begin{array}{\|c\|c} \substack{z \\ \underset{\sim}{2}} \end{array}$	$\begin{array}{\|c} \hline \stackrel{O}{于} \\ \hline \end{array}$	্ָভু		$\begin{array}{\|c\|} \hline \infty \\ \\ \hline \infty \\ \infty \end{array}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \stackrel{1}{\sim} \end{aligned}$	$\begin{array}{\|c} \\ \\ \hline \end{array}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & \end{aligned}$																				\％
Flow Velocity （Feet Per Second）			$\underset{\text { ¢ }}{\text { ¢ }}$	$\stackrel{\circ}{\circ}$	$\begin{gathered} \infty \\ \substack{\infty \\ 0} \end{gathered}$	T			$\stackrel{\circ}{\stackrel{\circ}{\rightleftharpoons}}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{m}}}{\substack{2}}$	$\begin{gathered} \infty \\ \underset{\sim}{\infty} \\ \end{gathered}$																				
Gallons Per Minute		－	\sim	m	寸	n		\bigcirc	－	∞	σ	－	\bigcirc	$\stackrel{\sim}{\sim}$	a	$\stackrel{\sim}{2}$	\sim	¢	m	q	\％	\＆	안	号	\bigcirc	\bigcirc	∞	\bigcirc			$\stackrel{\sim}{5}$

CARRYING CAPACITY AND FRICTION LOSS FOR SCHEDULE 40 CPVC THERMOPLASTIC PIPE
（Independent variables ：Gallons per minute and nominal pipe size O．D．• Dependent variables ：Velocity，Friction head and pressure drop per 100 feet of pipe

Maximum Surge Pressure（PSI）				－	¢	－	Oiolion			$\underset{\sim}{\text { Ofo }}$	号容｜		－	｜ob	疗	（2000												
$\begin{aligned} & \text { Friction Pressure Loss } \\ & \text { (PSI Per } 100 \mathrm{Ft} \text {.) } \end{aligned}$	$=$			，		$b l l_{6}^{x}$	Min	on	2n on	on	Nollon	:\|c	cos	E	$\mathfrak{A n}$		$\underset{\sim}{\underset{\sim}{x}} \underset{\sim}{\underset{\alpha}{\alpha}}$											
Friction Head Loss （Ft．of Water Per 100 Ft ．）				Ato	－	En dix	$\begin{aligned} & 2 \\ & y_{t}^{2} \\ & 0 \\ & 0 \end{aligned}$	0		Noo	Colo	$\underset{\sim}{9}$	$\underset{\sim}{4}$		$\overbrace{0}^{\infty}$	$\frac{\square}{f} \frac{1}{4}$												
Flow Velocity （Feet Per Second）					ond	－	－	－	－	N／N		$\frac{8}{\square}$		$\begin{aligned} & 2 \\ & \hline \end{aligned}$	Od													
Maximum Surge Pressure（PSI）																												
$\begin{gathered} \text { Friction Pressure Loss } \\ \text { (PSI Per } 100 \text { Ft.) } \end{gathered}$	\bigcirc																											
Friction Head Loss （Ft．of Water Per 100 Ft ．）																												
$\begin{aligned} & \text { Flow Velocity } \\ & \text { (Feet Per Second) } \end{aligned}$																												
Maximum Surge Pressure（PSI）																												
Friction Pressure Loss （PSI Per 100 Ft．）	5																											
Friction Head Loss （Ft．of Water Per 100 Ft ．）																												
$\begin{gathered} \text { Flow Velocity } \\ \text { (Feet Per Second) } \\ \hline \end{gathered}$																												
Maximum Surge Pressure（PSI）																												
$\begin{gathered} \text { Friction Pressure Loss } \\ \text { (PSI Per } 100 \mathrm{Ft} \text {.) } \\ \hline \end{gathered}$																												
Friction Head Loss （Ft．of Water Per 100 Ft ）																												
$\begin{aligned} & \text { Flow Velocity } \\ & \text { (Feet Per Second) } \\ & \hline \end{aligned}$																												
Maximum Surge Pressure（PSI）																												
Friction Pressure Loss （PSI Per 100 Ft．）																												
Friction Head Loss （Ft．of Water Per 100 Ft ．）																												
Flow Velocity （Feet Per Second）																												
Maximum Surge Pressure（PSI）						¢	N													Bio								
Friction Pressure Loss （PSI Per 100 Ft．）	¢					M	\bigcirc	No．	0_{0}^{20}	O웅	0_{0}^{∞}	Sb	0		x_{0}^{2}	$\mathrm{c}_{\substack{t \\ 0 \\ 0}}^{0}$		Men	$\begin{array}{ll} 2 & n \\ n \\ 0 \\ 0 \end{array}$	p_{n}^{2}								
Friction Head Loss （Ft．of Water Per 100 Ft ）						O	U	M	0		筞		$\stackrel{\sim}{0}$	bion ex				C̛̣										
Flow Velocity （Feet Per Second）						¢	－	Not	cor	\＃	－	－	N	bld	－					x_{0}^{2}								
Maximum Surge Pressure（PSI）					－	（1）	Nota	\bigcirc						过	O													
Friction Pressure Loss （PSI Per 100 Ft．）					0_{0}^{0}	O	dom	mon	0		Nul		$\begin{gathered} 2 \\ \\ 0 \\ 0 \\ 0 \\ \hline \end{gathered}$	for													8	
Friction Head Loss （Ft．of Water Per 100 Ft ．）					noio	\％	\bigcirc	000	¢		No	\％		$\stackrel{\square}{8}$	－	$\underset{\sim}{\mathrm{N}}$	¢	or									$\stackrel{3}{\square}$	
Flow Velocity （Feet Per Second）				$\stackrel{7}{\text { ¢ }}$		Nom	\％	－	尔？	응	\％	－	O	気	N			－									Z̈	
Gallons Per Minute		\checkmark	い入	－ 0	\bigcirc	－${ }^{\circ}$										\bigcirc									\％	，	尤	

THERMAL EXPANSION AND CONTRACTION

Maximum Surge Pressure（PSI）					${ }_{0}^{2}$		\％	¢	Sta	S			（1）	－	－	（oxid											
$\begin{aligned} & \text { Friction Pressure Loss } \\ & \text { (PSI Per } 100 \mathrm{Ft} \text {.) } \end{aligned}$	¢			Bl\|lll	0	$\pm \begin{gathered} 9 \\ \hline \end{gathered}$	Ho	0	Af		0	e_{0}^{2}		nin	\hat{N}_{2}^{2}	Nom											
Friction Head Loss （Ft．of Water Per 100 Ft．）				O－	O	¢0		¢		－	dex	On		$\stackrel{e}{6}$													
Flow Velocity （Feet Per Second）				Ond	\％	－	$\stackrel{\sim}{0}$	－	ن	－	¢	－	0		\bigcirc	$\underbrace{2}_{2}$											
$\begin{aligned} & \text { Maximum Surge } \\ & \text { Pressure (PSI) } \end{aligned}$																								Rod			8
Friction Pressure Loss （PSI Per 100 Ft．）	\leq																						$\begin{aligned} & N_{0}^{\infty} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			Siciol	$\mathfrak{c x}$
$\begin{gathered} \text { Friction Head Loss } \\ \text { (Ft. of Water Per } 100 \text { Ft.) } \end{gathered}$																					\％	5		no deo		bin	مٌo
Flow Velocity （Feet Per Second）																						F	－		Omo	Bob	\mathfrak{p}_{5}^{t}
Maximum Surge Pressure（PSI）																			응응		ocio	\dot{s}		Brob			bebe
$\begin{aligned} & \text { Friction Pressure Loss } \\ & \text { (PSI Per } 100 \mathrm{Ft} \text {.) } \\ & \hline \end{aligned}$	S																		${ }_{0}^{\text {Sid }}$		mol	5	0		O	通䢒	－
Friction Head Loss （Ft．of Water Per 100 Ft ．）																			\％			y	0	Bo		－	－
Flow Velocity （Feet Per Second）																			¢obl	mo	$\xrightarrow{\text { comb }}$	O			¢		－
Maximum Surge Pressure（PSI）																			－			en		Bore			
Friction Pressure Loss （PSI Per 100 Ft．）	$=$																¢		管冏		0		Ad				
Friction Head Loss （Ft．of Water Per 100 Ft．）																	Oib		cos			\dot{f}					
Flow Velocity （Feet Per Second）																			－	¢	\％	N	\％${ }_{0}^{0}$	${ }_{\text {cosem }}$			
Maximum Surge Pressure（PSI）													－8000000			So			Brocto								
$\begin{aligned} & \hline \text { Friction Pressure Loss } \\ & \text { (PSI Per } 100 \text { Ft.) } \end{aligned}$	5												둥				Oon		0		$0 \begin{gathered} 0 \\ \substack{9 \\ 0 \\ 0 \\ 0 \\ \hline} \end{gathered}$		0				
Friction Head Loss （Ft．of Water Per 100 Ft ．）													\％		\|obie	Br	${ }^{n}$		Clloi			Bo	$\underset{\sim}{\substack{\underset{\sim}{2} \\ \sim}}$				
Flow Velocity （Feet Per Second）													N		${ }_{0}^{\circ}$	－	－	$\stackrel{0}{0}$				x_{5}^{5}	$\begin{aligned} & \circ \\ & \\ & \hline 10 \\ & \hline \end{aligned}$				
Maximum Surge Pressure（PSI）								－			尔	\sim_{0}°	O－m		－	O－			－	O20							
$\begin{aligned} & \hline \text { Friction Pressure Loss } \\ & \text { (PSI Per } 100 \text { Ft.) } \end{aligned}$	\leq						¢	Sio	O	$\underbrace{f}_{i f}$	ndid		0			No	${ }_{2}^{2}$	$\begin{gathered} 0 \\ 0 \\ 0 \end{gathered} \tilde{o}_{0}^{2}$	No								
Friction Head Loss （Ft．of Water Per 100 Ft．）							\％	00	¢	0	In	$\underset{\sim}{2}$		Nole iel iel	Bo			Bincin									
Flow Velocity （Feet Per Second）							骨	Nin	S		～	－	－	－	－	－	No		${ }_{\text {a }}^{0}$								
Maximum Surge Pressure（PSI）					0	¢	－	$\stackrel{\sim}{0}$		家	次	bid	O80		－	e_{0}^{0}		Ro	－								
Friction Pressure Loss （PSI Per 100 Ft．）	．				\％	0，	，				O	0	0		－	－	O	N－	\％								
Friction Head Loss （Ft．of Water Per 100 Ft．）					\％	0，	5	Oid	商筞	dit	－	O	－	¢	－	荗	＋	Nom	O20								
Flow Velocity （Feet Per Second）					（10）	家边	\％	－	＋	O	－	守过	－	¢	告等	Oiol	U		景								
Gallons Per Minute				\bigcirc	\bigcirc	\bigcirc	－iN	Nom			尔								잉이	잇융융	）	\％	－	1	－		

ike all piping material，ASTRAL CPVC PRO expands when heated and contracts when cooled．CPVC piping（regardless of pipe diameter）will expand about 1 inch per 50 feet of ength when subjected to a $50^{\circ} \mathrm{F}$ temperature increase， orefore，allowances must be made for this resulting movement．However，laboratory testing and installation experience have demonstrated that the practical issues are much smaller than the coefficient of thermal expansion would suggest．The stresses developed in CPVC pipe are enerally much smaller than those developed in metal pip for equal temperature changes because of the difference in elastic modulus．Required loops are smaller than those recommended by the Copper Development Association for copper systems．Expansion is mainly a concern in hot water nes，Generally，thermal expansion can be accommodated with changes in direction．
However，a long straight run may require an offset or loo Only one expansion loop，properly sized is required in any ingle straight run，regardless of its total length．If more convenient，two or more smaller expansion loops，properly sized，can be utilized in a single run of pipe to accommodate he thermal movement．Be sure to hang pipe with smooth straps that will not restrict movement．For convenience，loop or offset）length have been calculated for different pipe sizes and different run length with a temperature increase（DT）of about 80° ．The results，shown in Tables A and B ，are presented simply as a handy guide for quick and easy determinations of acceptable loop length for the approximate conditions．Loop length for other temperatures nd run length can be calculated utilizing the following equations ：

THERMAL EXPANSION FORMULA

EXPANSION LOOP FORMULA

$L=\sqrt{\frac{3 E D(\Delta L)}{2 S}}$

Where：
$=$ Loop Length（in．）
$=$ Moduls of elasticity at maximum temperature（psi）
$=$ Working stress at maximum temperature（psi）
$=$ Outside diameter of pipe（in．）
$\Delta L=L_{p} c \Delta T$
Where： $-p=$ Length of pipe（in．）
$=$ Coefficient of thermal expansion（in．in $/ \mathrm{FF}$ ）
$=3.4 \times 10^{-5} \mathrm{in} / \mathrm{in} / / \mathrm{OF}$ for CPVC
$\Delta T=$ Change in temperature（ T

THERMAL EXPANSION

 AND CONTRACTION

Modulus of Elasticity and Working Stress For CPVC

Temperature		Modulus,E(psi)	Stress,S(psi)
${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$		
73	(27)	423,000	2000
90	(32)	403,000	1800
110	(43)	371,000	1500
120	(49)	355,000	1300
140	(60)	323,000	1000
160	(71)	291,000	750
180	(82)	269,000	500

Do not butt-up against fixed structure (joist, stud or wall)

TABLE B
ASTRAL LPVLC PRO IPS PIPES
(ASTM F441) (ASTM F 441) Calcula 1 Loop (OHfset) Length with
有解

HORIZONTAL \&

VERTICAL SUPPORTS

Horizontal \& Vertical runs of ASTRAL CPVC PRO Pipe should be supported by pipe clamps or by hangers located on the horizontal connection close to the Riser, Hangers should not have rough or sharp edges, which come in contact with the pipe.

SPACING									
Nominal Pipe Size		$\begin{gathered} 21^{\circ} \mathrm{C} \\ \left(70^{\circ} \mathrm{F}\right) \end{gathered}$		$\begin{gathered} 49^{\circ} \mathrm{C} \\ \left(120^{\circ} \mathrm{F}\right) \end{gathered}$		$\begin{gathered} 71^{\circ} \mathrm{C} \\ \left(160^{\circ} \mathrm{F}\right) \end{gathered}$		$\begin{gathered} 82^{\circ} \mathrm{C} \\ \left(180^{\circ} \mathrm{F}\right) \end{gathered}$	
mm	in.	Ft.	(cm)	Ft.	(cm)	Ft.	(cm)	Ft.	(cm)
15	1/2	5.5	(167.70)	4.5	(137.16)	3.0	(91.44)	2.5	(76.20)
20	$3 / 4$	5.5	(167.70)	5.0	(152.40)	3.0	(91.44)	2.5	(76.20)
25	1	6.0	(182.88)	5.5	(167.70)	3.5	(106.68)	3.5	(91.44)
32	11/4	6.5	(198.12)	6.0	(182.88)	3.5	(106.68)	3.5	(106.68)
40	11/2	7.0	(213.36)	6.0	(182.88)	3.5	(106.68)	3.5	(106.68)
50	2	7.0	(213.36)	6.5	(198.12)	4.0	(121.92)	3.5	(106.68)
65	21/2	8.0	(244.00)	7.5	(228.60)	4.5	(137.16)	4.0	(121.92)
75	3	8.0	(244.00)	7.5	(228.60)	4.5	(137.16)	4.0	(121.92)
100	4	9.0	(274.32)	8.5	(259.08)	5.0	(152.40)	4.5	(137.16)
150	6	10.0	(304.80)	9.0	(274.32)	5.5	(167.07)	5.0	(152.40)
200	8	11.0	(335.28)	10.0	(304.80)	6.0	(182.88)	5.5	(167.07)
250	10	11.5	(350.52)	10.5	(320.04)	6.5	(198.12)	6.0	(182.88)
300	12	12.5	(381.00)	11.0	(335.28)	7.5	(228.60)	6.5	(198.12)

BAND HANGER

UNDERGROUND
 INSTALLATION

REQUIREMENT OF THERMALLY INSULATED CPVC PIPE

TRENCHING

The following trenching and burial procedures should be used to protect the piping system.

1. The trench should be excavated to ensure the sides will be stable under all working conditions.
2. The trench should be wide enough to provide adequate room for the following
A. Joining the pipe in the trench
B. Snaking the pipe from side or side to compensate for expansion and contraction.

C. Filling and compacting the side fills. The space between the pipe and trench wall must be wider than the compaction equipment used in the compaction of the back fill. Minimum width shall not be less than the greater of either the pipe outside diameter plus 16 inches or the pipe outside diameter times 1.25 plus 12 inches. Trench width may be different if approved by the design engineer.
3. The trench bottom should be smooth, free of rocks and debris, continuous and provide uniform support. If ledge rock, hardpan or large boulders are encountered, the trench bottom should be padded with bedding of compacted granular material to a thickness of at least 4 inches. Foundation bedding should be installed as required by the engineer.
4. Trench depth is determined by the pipe's service requirements. Plastic pipe should always be installed at least below the frost level. The minimum cover for lines subject to heavy overhead traffic is 24 inches.
5. A smooth trench bottom is necessary to support the pipe over its entire length on firm stable material. Blocking should not be used to change pipe grade or to intermittently support pipe over low sections in the trench

CPVC pipes and fittings can be installed underground. Since these piping systems are flexible systems, proper attention should be given to burial conditions. The stiffness of the piping system is affected by sidewall support, soil compaction, and the condition of the trench. Trench bottoms should be smooth and regular in either undisturbed soil or a layer of compacted backfill. Pipe must lie evenly on this surface throughout the entire length of its barrel. Excavation, bedding and backfill should be in accordance with the provision of the local Plumbing Code having jurisdiction.

BEDDING AND BACKFILLING

1. Even though sub-soil conditions vary widely from place to place, the pipe backfill should be stable and provide protection for the pipe
2. The pipe should be surrounded with a granular material which is easily worked around the sides of the pipe. Backfilling should be performed in layer of 6 inch with each layer being sufficiently compacted to 85% to 95% compaction.
3. A mechanical tamper is recommended for compacting sand and gravel backfill which contain a significant proportion of fine grained material, such as silt and clay. If a tamper is not available, compacting should be done by hand.
4. The trench should be completely filled. The backfill should be placed and spread in fairly uniform layers to prevent any unfilled spaces or voids.

CPVC has much lower thermal conductivity then metals used in piping systems ($0.14 \mathrm{~W} / \mathrm{mk}$ for CPVC verus $>400 \mathrm{~W} / \mathrm{mk}$ for copper).
For this reason in most cases it is not necessary to thermally insulate CPVC piping. However the equation below can be used to calculat the approximate heat loss from CPVC pipes 1 meter length of pipe.
$Q=\frac{\lambda}{e} \pi\left[\frac{d i+d o}{2}\right] . \Delta T$
Where $\quad \mathrm{Q}=$ Heat loss per meter of pipe, W / m
$\lambda=$ Thermal conductivity. [W/mk] for CPVC, $\lambda=0.14 \mathrm{w} / \mathrm{mk}$
=Thickness of pipe, mm 068
$\pi=3.1416$
di $=$ Inside diameter, mm
do = Outside diameter, mm
$\Delta T=$ Temperature differential between inner and outer surface of pipe
This can be ap proximated to: T water. Tambient (K)

EXAMPL

What is the heat loss/meter from a 20 mm outside diameter CPVC pipe. wall thickness $2,3 \mathrm{~mm}$, with water flowing inside at $80^{\circ} \mathrm{C}$ and an ambient air temperature of $25^{\circ} \mathrm{C}$?
$Q=\frac{0.14}{2.3} 3.1416\left[\frac{15.4+20}{2}\right] .(80-25)$

$=186 \mathrm{~W} / \mathrm{m}$

$\mathrm{Q}=\mathrm{K} \Delta \mathrm{T}$
Equation (1) can be simplified for standard pipe dimensions to:

Where K is a conductivity of CPVC and the pipe geometry in the previous example. do $=20 \mathrm{~mm}$, and $\mathrm{e}=$ 2.3 mm
$\mathrm{Q}=\frac{0.14}{2.3} 3.1416\left[\frac{15.4+20}{2}\right]=3.38(\mathrm{~W} / \mathrm{m})$

HANDLING

he pipe should be handled with reasonable care because hermoplastic pipe is much lighter in weight than metal pipe there is sometimes a tendency to throw it around. This should be avoided
The pipe should never be dragged or pushed from a truck bed. Pallets for pipe should be removed with a fork lift. Loose pipe can be rolled down timbers as long as the pieces do not fall on each other or on any hard or uneven surface. In al cases, severe contact with any sharp objects (rocks, angle irons, forks on forklifts, etc.) should be avoided.

StORAGE

If possible, pipe should be stored inside. When this is not possible, the pipe should be stored on level ground which is dry and free from sharp objects. If different schedules of pipes are stacked together, the pipes with the thickest walls hould be at the bottom

The pipes should be protected from the sun and be in an rea with proper ventilation. This will lessen the effects of ultraviolet rays and help prevent heat built-up.
f the pipes are stored in racks, it should be continuously supported along its length. If this is not possible, the spacing f the supports should not exceed three feet (3)
When storage temperatures are below $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$, extra care should be taken when handling the pipe. This will help prevent any problems which could be caused by the slightly lower impact strength of PVC pipes at temperature below freezing.

CPVC PRO PIPE \& FITTINGS
CTS - COPPER TUBE SIZE
AS PER ASTM D2846

PRODUCT

NSF
Only those products bearing the above marks are certified
$\left.\begin{array}{llll|}\hline & \\ \text { PIPE SDR -13.5 } \\ \text { (3 MTR. LENGTH) }\end{array}\right]$

| |
| :--- | :--- | :--- | :--- |

CPVC PRO PIPE \& FITTINGS

IPS - IRON PIPE SIZE AS PER ASTM F441

		PIPE SCHEDULE 40 (3 MTR. LENGTH)	
$\begin{aligned} & \text { Size } \\ & (\mathrm{cm}) \end{aligned}$	$\begin{aligned} & \text { Size } \\ & \text { (inch) } \end{aligned}$	Product Code	$\begin{aligned} & \text { Std. Pkg. } \\ & \text { (Nos.) } \end{aligned}$
6.5	$21 / 2$	M511400307	05
8.0	3	M511400308	03
10.0	4	M511400309	02
15.0	6	M511400310	01

Size (cm)	Size (inch)	Product Code	Std. Pkg. (Nos.)
6.5	$21 / 2$	M511800307	05
8.0	3	M511800308	03
10.0	4	M511800309	02
15.0	6	M511800310	01
20.0	8	M511800311	01
$10^{\prime \prime}$ and $12^{\prime \prime}$ pipe sizes are available on request			

		PIPE SCHEDULE 80 (5 MTR. LENGTH)	
$\begin{aligned} & \text { Size } \\ & (\mathrm{cm}) \end{aligned}$	$\begin{aligned} & \text { Size } \\ & \text { (inch) } \end{aligned}$	Product Code	Std. Pkg (Nos.)
6.5	$21 / 2$	M511800507	05
8.0	3	M511800508	03
10.0	4	M511800509	02
15.0	6	M511800510	01
20.0	8	M511800511	01

CPVC PRO PIPE \& FITTINGS
CTS - AS PER ASTM D2846

CPVC

| |
| :--- | :--- | :--- |

		CROSS-SOC	
$\begin{aligned} & \text { Size } \\ & (\mathrm{cm}) \end{aligned}$	Size (inch)	Product Code	$\begin{aligned} & \text { Std. Pkg. } \\ & \text { (Nos.) } \end{aligned}$
1.5	$1 / 2$	M512112401	200
2.0	3/4	M512112402	100
2.5	1	M512112403	100

CPVC PRO PIPE \& FITTINGS CTS - AS PER ASTM D2846

${ }^{\mathrm{Cran}} \mathrm{VCC}_{\mathrm{paO}}$

		REDUCER TEE -SOC	
$\begin{aligned} & \hline \text { Size } \\ & (\mathrm{cm}) \end{aligned}$	Size (inch)	Product Code	$\begin{aligned} & \text { Std. Pkg. } \\ & \text { (Nos.) } \end{aligned}$
$1.5 \times 1.5 \times 2.0$	$1 / 2 \times 1 / 2 \times 3 / 4$	A512110291*	As Req.
$2.0 \times 1.5 \times 2.0$	3/4x $x^{1 / 2} \times 3 / 4$	A512110292*	As Req.
$2.0 \times 1.5 \times 1.5$	$334 \times 1 / 2 \times 1 / 2$	A512110293*	As Req.
$2.0 \times 2.0 \times 1.5$	3/4x ${ }^{3 / 4 \times 1 / 2}$	M512110214	300
$2.5 \times 2.5 \times 1.5$	$1 \times 1 \times 1 / 2$	M512110215	300
$2.5 \times 2.5 \times 2.0$	$1 \times 1 \times 3 / 4$	M512110216	75
$3.2 \times 3.2 \times 1.5$	$11 / 4 \times 11 / 4 \times 1 / 2$	M512110217	100
$3.2 \times 3.2 \times 2.0$	$11 / 4 \times 11 / 4 \times 3 / 4$	M512110218	120
$3.2 \times 3.2 \times 2.5$	${ }^{11 / 4 \times 11 / 4 \times 1}$	M512110219	80
$4.0 \times 4.0 \times 1.5$	$11 / 2 \times 11 / 2 \times 1 / 2$	M512110220	70
$4.0 \times 4.0 \times 2.0$	$11 / 2 \times 11 / 2 x^{3 / 4}$	M512110221	60
$4.0 \times 4.0 \times 2.5$	$11 / 2 \times 11 / 2 \times 1$	M512110222	30
$4.0 \times 4.0 \times 3.2$	$11 / 2 \times 11 / 2 \times 11 / 4$	M 512110223	60
$5.0 \times 5.0 \times 1.5$	$2 \times 2 \times 1 / 2$	M512110224	30
$5.0 \times 5.0 \times 2.0$	$2 \times 2 \times 3 \times 4$	M512110225	35
$5.0 \times 5.0 \times 2.5$	$2 \times 2 \times 1$	M512110226	15
$5.0 \times 5.0 \times 3.2$	$2 \times 2 \times 1 / 4$	M512110227	30
$5.0 \times 5.0 \times 4.0$	$2 \times 2 \times 1 / 1 / 2$	M512110228	25

CPVC PRO PIPE \& FITTINGS
CTS - AS PER ASTM D2846

Only those pooducts bearing
the above malks are eertified

Size (cm)	Size (inch)	Product Code	Std. Pkg. (Nos.)
2.0	$3 / 4$	M5121112402	300

| | |
| :--- | :--- | :--- |

| |
| :--- | :--- | :--- | :--- |

CPVC PRO PIPE \& FITTINGS
CTS - AS PER ASTM D2846

Size (cm)	Size (inch)	Product Code	Std. Pkg. (Nos.)
1.5	$1 / 2$	M5121110501*	01
2.0	$3 / 4$	M5121110502	01
2.5	1	M5121110503	01

CPVC PRO PIPE \& FITTINGS
SPARES FOR CONCEALED VALVE
CONCEALED VALVE
(CHROME PLATED)
(FLOWER)
$\left.\begin{array}{lll}\text { CONCEALED } \\ \text { VALVE }\end{array}\right]$

${ }^{\text {ASTRAL }}{ }^{-1} C_{p R O}$

		S.S. FLANGE WITH RUBBER GROMET	
Size (cm)	Size (inch)	Product Code	Std. Pkg. (Nos.)
2.0	$3 / 4$	RM04159004	As Req.

CPVC PRO PIPE \& FITTINGS
CTS - AS PER ASTM D2846

$\left.\begin{array}{l}\text { CONCEALED } \\ \text { CROME PLATED } \\ \text { VALVE }\end{array}\right]$

		VALVE BODY WITH 'O' RING	
$\begin{aligned} & \text { Size } \\ & (\mathrm{cm}) \end{aligned}$	$\begin{aligned} & \text { Size } \\ & \text { (inch) } \end{aligned}$	Product Code	$\begin{aligned} & \text { Std. Pkg. } \\ & \text { (Nos.) } \end{aligned}$
2.0	$3 / 4$	FA-VAL-D	As Req.

NSF PRE.

		BALL VALVES (CTS SOCKETS)	
$\begin{aligned} & \text { Size } \\ & (\mathrm{cm}) \end{aligned}$	Size (inch)	Product Code	$\begin{aligned} & \text { Std. Pkg. } \\ & \text { (Nos.) } \end{aligned}$
1.5	1/2	M512112701	80
2.0	3/4	M512112702	120
2.5	1	M512112703	50
3.2	11/4	M512112704	40
4.0	11/2	M512112705	30
5.0	2	M512112706	15

| | | |
| :--- | :--- | :--- | :--- |

CPVC PRO PIPE \& FITTINGS

COPPER TUBE SIZE - AS PER ASTM D2846

${ }^{\text {astralal }} \mathrm{VC}_{\text {pro }}$

		PLASTIC STRAP (NYLON)

CPVC PRO PIPE \& FITTINGS
SCH - 40 FITTINGS AS PER ASTM F438

ELBOW 90ㅇ. SOC

| | | |
| :--- | :--- | :--- | :--- |
| | | REDUCER
 BUSHING
 (SPGXSOC) |

CPVC PRO PIPE \& FITTINGS

SCH 80 FITTINGS AS PER ASTM F439

COUPLER - SOC			

ELBOW 90º - SOC

Size (zm)	Size (inch)	Product Code	Std. Pkg. (Nos.)
6.5	$2^{1 / 2}$	M512801307	30
8.0	3	M512801308	20
10.0	4	M512801309	15

${ }^{\text {anspan }} \mathrm{CL}_{\text {Pro }}$

CPVC PRO PIPE \& FITTINGS

SCH - 80 FITTINGS AS PER ASTM F439

			REDUCER TEE -
SOC			

Size (cm)	Size (inch)	Product Code	Std. Pkg. (Nos.)
6.5	$21 / 2$	M512803307	12
8.0	3	M512803308	10
10.0	4	M512803309	06

$\left.\begin{array}{ll|l|} & \begin{array}{rl}\text { REDUCER } \\ \text { BUSHING }\end{array} \\ \text { (SPGXSOC) }\end{array}\right\}$

CPVC PRO PIPE \& FITTINGS
VALVES -TRADING

STD. BUTTERFLY VALVE EPDM W/HANDLE

Size (cm)	Size (inch)	Product Code	Std. Pkg. (Nos.)
6.5	$21 / 2$	$722311-025 \mathrm{C}^{\circ}$	As Req.
8.0	3	$722311-030 \mathrm{C}^{\circ}$	As Req.
10.0	4	$722311-040 \mathrm{C}^{\circ}$	As Req.
15.0	6	$722311-06 \mathrm{C}^{\circ}$	As Req.
20.0	8	$722311-080 \mathrm{C}^{\circ}$	As Req.

CPVC PRO PIPE \& FITTINGS
SOLVENT CEMENTS \& PRIMER

Oty. (gm)	Product Code	Std. Pkg. (Nos.)
50	BONDSETFS-50	As Req.
100	BONDSETFS-100	As Req.

1.CUTTING

In order to make a proper and neat joint, measure the pipe length accurately and make a small mark. Ensure that the pipe and fittings are size compatible. You can easily cut with a wheel type plastic pipe cutter or hacksaw blade. Cutting tubing as squarely as possible provides optimal bonding area within a joint.

2. DEBURRING/ BEVELING

Burrs and filings can prevent proper contact between tube and fitting during assembly and should be removed from the outside and inside of the pipe. Debarking tool, pocket knife or file are suitable for this. A slight bevel on the end of the tubing will ease entry of the tubing into the fitting socket.

3. FITTING

PREPARATION
Using a clean, dry rag, wipe dirt and moisture from the fitting sockets and tubing end. The tubing should make contact with the socket wall $1 / 3$ to $2 / 3$ of the way into the fitting socket.

4. SOLVENT CEMENT

APPLICATION

Use only CPVC cement or an all - purpose cement conforming to ASTM F-493 or joint failure may result. When making a joint, apply a heavy, even coat of cement to the pipe end. Use the same applicator without additional cement to apply a thin coat inside the fitting socket. Too much cement can cause clogged water ways.

5. ASSEMBLY

Immediately insert the tubing into the fitting socket, rotate the tube $1 / 4$ to $1 / 2$ turn while inserting. This motion ensures an even distribution of cement within the joint. Properly align the fittings. Hold the assembly for approximately 10 seconds, allowing the joint to set-up.

6. SET AND CURE

Solvent cement set and cure times are a function of pipe size, temperature and relative humidity. Curing time is shorter for drier environments, smaller sizes and higher temperatures. It requires 10 to 20 minutes for perfect joint.

Note: For sizes above $65 \mathrm{~mm}(21 / 2)$ use IPS 70 primer before applying solvent cement. The purpose of a primer is to penetrate and soften the surfaces so they can stick together. The proper use of a primer ensures that the surfaces are prepared for fusion in a wide variety of weather conditions.

HOW TO USE SOLVENT CEMENT
 PRIMER \& CLEANER

JOINT CURING

$\begin{aligned} & \text { Temperature } \\ & \text { Range } \end{aligned}$	Pipe Size $-1 / 2$ to $11 / 4$ (15 mm to 32 mm)	Pipe Size $1 / 2^{1}$ to $3^{\prime \prime}$ $(40 \mathrm{~mm}$ to 80 mm)	Pipe Size $4^{\prime \prime}$ to $8^{\prime \prime}$ $(00 \mathrm{~mm}$ to 200 mm	Pipe Size $10^{\prime \prime}$ to 12 250 mm 300 mm
$15.5{ }^{\circ} \mathrm{C}-37.7^{\circ} \mathrm{C}$	15 min.	30 min .	1 hrs .	$2 \mathrm{hrs}$.
$4.4{ }^{\circ} \mathrm{C}-15.5^{\circ} \mathrm{C}$	hrs	2 hr	4 h	

$\begin{aligned} & \text { Temperature } \\ & \text { Range } \end{aligned}$	Pipe Size $1 / 2^{\prime \prime}$ to $11 / 4^{\prime \prime}$ (15 mm to 32 mm)	Pipe Size $1^{11 / 2^{\prime \prime}}$ to $3^{\prime \prime}$ (40 mm to 80 mm)	Pipe Size $4^{\prime \prime}$ to $8^{\prime \prime}$ 100 mm to 200 mm)	Pipe Size $10^{\prime \prime}$ to $12^{\prime \prime}$ $(250 \mathrm{~mm}$ to $300 \mathrm{~mm})$
$15.5^{\circ} \mathrm{C}-37.7{ }^{\circ} \mathrm{C}$	6 hrs.	2 h	24 h	48
. $4^{\circ} \mathrm{C}-15.5^{\circ}$	12 hrs .	24 hrs.	48 hrs .	

CHOOSING SOLVENT CEMENTS \& PRIMERS

Solvent cements for ASTRAL CPVC PRO systems must conform to the requirements of ASTM F-493 or equivalent and should carry this identification on the can / tube label. A primer or cleaner must be used. Primers Sanitation Foundation (NSF) mark or other potable water approval should also be located on the container.

Certain code bodies require orange CPVC solvent cement and purple primer to facilitate identification by plumbing inspectors. However, unpigmented (clear) CRC solvent cement and primer are available and accepted by various jurisdictions. If you decide to use clear products, we strongly recommend contracting the local plumbing inspector prior to beginning a job to determine whether these clear cements and primers are acceptable or not.

CPVC SOLVENT CEMENT'S SHELF LIFE

CPVC solvent cement are formulated to have a Shelf life of two years. Cans are usually marked with manufacturing dates. Good CPVC solvent cement should have the consistency of syrup or honey with no undissolved materials. Aged cement will often change colour or begin to thicken and become gelatinous or away.

SOLVENT CEMENT FREEZING

Use the same precautions to protect CPVC solvent cement from freezing as you would with PVC cement Once cement gels, it can not be recovered and should be discarded.

EFORE BEGINNING

. Verify the cement is the same as the pipes and fittings being used.
. Check the temperature where the cementing will take place.

- Cement take longer time to set up in cold weather Be sure to allow extra time for curing. Do not try to speed up the cure by artificial means this could
Solvents evaporate faster in warm weather Work Solvents evaporate faster in wark work joint is assembled. Keep the cement as cool as possible. Try to stay out of direct sunlight.
Keep the lid on cements, cleaner, and primers when not in use Evaporation of the solvent will effect the
. Stir or shake cement before using.

5. Use $20 \mathrm{~mm}(3 / 4)$ dauber on small diameter pipes $40 \mathrm{~mm}\left(1 \frac{1}{2}\right.$ ") dauber, upto $80 \mathrm{~mm}\left(3^{\prime \prime}\right)$ pipe, and a natural bristle brush, swab, or roller having size of $1 / 2$ the pipe diameter on pipes from $100 \mathrm{~mm}\left(4^{\prime \prime}\right)$ and up.
6. Do not mix cleaner or primer with cement
7. Do not use thickened or lumpy cement. It should be like the consistency of syrup or honey
Do not handle joints immediately after assembly.
8. Do not allow daubers to dry out.
9. Maximum temperature allowable for CPVC pipe is $180^{\circ} \mathrm{F}$.
10. All coloured cements, primers, and cleaners will have a permanent stain. There is no known cleaning agent 12. Use according to the step outline in ASTM D-2846, joining of pipe and fittings.

IMPORTANT

NOTES

NUMBER OF JOINTS PER LITER OF CEMENT BY PIPE SIZE

Dia of Pipe		Appx. Nos of joints
(mm)	(in.)	
15	$1 / 2$	1200
20	$3 / 4$	750
25	1	500
32	$11 / 4$	450
40	$11 / 2$	325
50	2	225
65	$21 / 2$	50
75	3	40
100	4	30
150	6	10
200	8	5
250	10	$2-4$
300	12	$1-2$

Approximate numbers of joints which can be made per Itr. of solvent cement

SAFE HANDLING OF SOLVENT CEMENT

When using solvent cements, primers and cleaners there are some basic safety measures.

ALL USERS SHOULD KEEP IN MIND.

- Avoid prolonged breathing of solvent vapors. When pipes and fittings are being joined in enclosed area, the use of ventilating devices are advised.
- Keep cements, primers and cleaners away from all the sources of ignition, heat, sparks and open flame.
- Keep containers of cements, primers and cleaners tightly closed except when the product is being used.
- Dispose of all rags used with solvents in a proper outdoor waste receptacle.

Avoid eye \& skin contact. In case of eye contact, flush with plenty of water for 15 minutes \& call a physician

THREAD SEALANTS

Threaded CPVC fittings with tapered pipe threads (e.g. male thread adapters) must be used with a suitable thread sealant to insure leak-proof joints. Over the years, PTFE (Teflon® or equivalent) tape has been the preferred thread sealant, it is still the most widely accepted and approved thread sealant. Some paste sealant can affect CPVC fittings; therefore only sealants recommended for use with CPVC by the thread sealant manufacturer must be used.

GENERAL GUIDELINE FOR

ALL INSTALLATIONS

DOS

1. Install product according to ASTRAL's Installation nstructions and manual and follow recommended safe work practices.
2. Keep Pipe and Fittings in original packaging until needed and store pipes in covered areas.
3. Use tools designed for use with plastic pipe and fittings.
4. Cut-off minimum 25 mm beyond the edge of the crack in case any crack is discovered on the pipe.
4A. Pipe may be cut quickly and efficiently by several methods. Wheel-type plastic tubing cutters are preferred. Ratchet type cutters or fine tooth saws are cutter, be certain to score the exterior wall b rotating the cutter blade in a circular motion around the pipe. Do this before applying significant downward pressure to finalise the cut. This step leads to a square cut. In addition, make sure ratchet cutte blades are sharp. Cutting pipe as squarely as possible provides optimal bonding area within
4B. Burrs and filings can prevent proper contact between the tube and fittings during assembly, and
should be removed from the outside and inside of the pipe. A chamfering tool is preferred, but a pocke knife or file is also suitable for this purpose.
4C.Use only CPVC Cement or an all purpose solven cement conforming to ASTM F-493 otherwise it may result in joint failure
5. Always conduct hydraulic pressure testing after installation to detect any leaks and faults. Wait for appropriate cure time before pressure testing. Fil lines slowly and remove air from the system prior to pressure testing.
6. Rotate the pipe $1 / 4$ to $1 / 2$ to spread the CPVC Solvent Cement evenly in the joint while pushing the Pipe into Fitting.
7. Use Teflon tapes with threaded fittings,
8. Ensure that there are no sharp edges in contact with the pipe while embedding the pipes on the walls or in the floors.
8A. When making a transition connection to metal threads, use a special transition fitting or CPVC mal
threaded adapter whenever possible. Do not over-torque plastic threaded connections. Head tigh plus one-half turn should be adequate
9. Provide Vertical \& Horizontal Supports as recommended using the Plastic Straps only.
10. Apply a water- based paint only on exposed pipes \& fittings.
11. Visually inspect all joints for proper cementing at the end of shift or day A Visual inspection of th end of shift or day. A Visual inspection of the
complete system is also recommended during pressure testing.
12. When connecting to a gas water heater, duct and CPVC should not be located within 50 cm of the duct For water heaters lacking reliable temperature control, this distance may be increased up to 1 m . A metal nipple or flexible appliance connector should be utilized. This measure eliminates the potential for damage to plastic piping that might result from
. Use of a CPDV trastion
13. Use of a brass/CPV transition adapter when water heater replacement in the future.
14. Pressure test CPVC systems in accordance with local code requirements.

DON'TS

13

1. Do not use Metal Hooks or Nails to support / hold or put pressure on the pipes. Do not use straps \& hangers with rough or sharp edges. Do not tighten the straps over the pipes.
Never expose the pipe to Open Flame while trying
to bend it.
2. Do not drop pipes on edges from heights. Do not drop heavy objects on pipes or walk on pipes.
3. Do not dilute Solvent Cement with Thinner /MTO o any other liquid etc.
Do not use air or gases for pressure testings.
4. Do not use any other petroleum or solvent- based sealant, adhesive, lubricant or fire hazard materia on CPVC pipes and fittings.
Do not use CPVC Pipes \& Fittings for pneumatic applications.
the

NOTES

[^0]

[^1][^2]

ASTRAL POOY TECHNIK LIMITED - Ahmedabad warrants to the original
owner that the product will be free from manufacturing defect and confirms
Owner net he product
to current applicable ATM standards under normal use. Buyer's remedy for
to current applicable ASTM standards under normal use. Buyer's remedy for
breach of this warranty is inited to replacement of or credit or the defective
breach of this warranty is linited to replacement of or creditit or the defective
proouct. This warranty excludes any expense for removal or reinstallation of
any cefectis.
damages.
damages.
The limited warranty only applicable if ASTRAL CPVC PRO Pipes, Fittings \&
Weld-on solvent cement are used.

A consumer validated Superbrand in piping category for consecutive 3 years

India's Most Trusted Pipe Brand based on TRA's Brand Trust Report for the $3^{\text {rd }}$ time

India's Most Desired Brand based on TRA's Brand Trust Report 2021

[^0]:[^1]:

[^2]:

